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Section 2: Static Characterisation of DC Motors

Exercise 2.3.1: Calculate and Plot DC Motor Gain

Before we can plot the gain of the DC motor vs. input voltage we need to perform the
Section 2 experiment from the Lab Manual [1]. We select our first disc (57g) and click on
the ”Voltage (open loop)” setting. We increase the voltage from 0V to 10V starting in steps
of 0.1, then 0.2 and then 0.5. We use smaller step increments at lower input voltages. At
each voltage step we use the ”Data Snapshot” tool to record the angular velocity (ω) of the
disc. When we’re done we save the data as a CSV. Now we run the experiment again this
time going from 0V to −10V with the same voltage steps. We then repeat for a second disc
(110g). Now using the formula below which is given in the lab manual:

ω = Kv × Vin (2.1)

we can calculate the gain of our motor (the motor constant Kv) at each input voltage. We
then plot our gain against input voltage for each set of results. The four graphs are pictured
in figure 1. We can see our motor constant (Kv) settles at ' 47.
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Figure 1: Exercise 2.3.1, Gain vs Vin

We notice that the graphs do not follow the simplified DC motor equation given in the lab
manual (our value of Kv isn’t constant). The angular velocity remains at 0 until a certain
“threshold” voltage is reached. Angular velocity, and therefore gain then starts to increase
until the graph flattens out at a final value and starts to obey the DC motor equation 2.1
given. We also see slight differences between the 57g and 110g plots.
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Exercise 2.3.2: Reasons for Non-Perfect Match of Response

The non-perfect match of the DC motor equation could come from the fact that equation
2.1 will only be true if our motor torque remains constant according to the full equation:
ω = V

k
− T

k2
R. At low voltages, the torque of the motor is also low. The inertia of our

disc load and other mechanical factors such as air resistance prevent the disc from spinning
with angular velocity (ω). As we increase our voltage, current increases and torque increases
according to the relationship: τ = ktIm until it is high enough to partially overcome the
inertia of the load at which point the disc starts to move.

The torque then continues increasing slightly until it reaches a constant final value where
it is high enough to fully overcome the load. At this point the relationship between input ve-
locity and ω becomes constant which is when our motor constant Kv stabilises. Internal DC
motor losses could also cause non-linearities. This non-perfect match would be problematic
in real world applications. For example, Surveillance Radar systems rely on very constant
and predictable angular velocity which could be hard to achieve with a varying motor con-
stant. This means that systems could only be operated above certain voltage thresholds
where a linear relationship between Vin and ω could be expected. This would limit the range
of operation of the system.

Exercise 2.3.3 (a): Calculate Max. Pulse Count Measured

Given our encoder has a resolution of 1000CPR and a sampling period of 0.1s we can
calculate the maximum pulse count by using the maximum speed reached in the experiment.
The highest speed reached was 477rad/s by the 57g disc. We can use the formula:

Cp = ωrTs (2.2)

where Cp is pulse count, ω is angular velocity, r is resolution and Ts is sampling time. We
convert ω to rev/s: 477

2π
= 75.92 rev/s, and then sub our numbers in:

Cp = ωrTs = (75.92)(1000)(0.1) = 7592

Exercise 2.3.3 (b): Calculate Max. ω the System can Measure

Given that the pulse count is stored in a 15 bit word we know the maximum pulse count
(Cp) is: 215 = 32, 768. Now using equation 2.2 again, this time rearranged:

ω =
Cp
rTs

=
(32768)

(1000)(0.1)
= 327.68

This is in rev/s so to convert to rad/s: (327.68)(2π) = 2058.87 rad/s.

Exercise 2.3.3 (c): Calculate Max. Allowable Sampling Time (Ts)

For the experimental system, the max ω recorded was 477 rad/s (75.92rev/s). Our maximum
pulse count (Cp) as calculated in part (b) is 32, 768. Using these figures along with our r
value we can calculate the max allowable sampling time for our system (in seconds).

Ts =
Cp
rω

=
(32768)

(1000)(75.92)
= 0.4316
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Section 3: Characterisation of 1st Order Systems

Exercise 3.5.1: Detailed Description of Experimental Process

In this experiment we will be analysing the response of a first order velocity control system
to a step input [1]. We want to measure the response of the same two discs we used in
Section 2 so 57g and 110g. The procedure is as follows.

Starting with the 57g disc, we will use the ”Voltage (open loop)” setting again but this
time with a step input. We open the ”graph” and ”graph input” tools. We set the step size
to 2V and press run. Depending on the disc, the response will take different amounts of
time to settle at its final value. For 57g it takes about 7 − 10 seconds. Save a CSV file of
the response. Now that we’ve gathered the necessary data we can perform our analysis. We
know that the voltage to speed transfer function of our 1st order system is given by:

Ωm(s)

Vm(s)
=

K

τs+ 1
(3.1)

Where Ωm(s) is our angular velocity output, Vm(s) is our input voltage, K is our system
gain and τ is our time constant. We can calculate K and τ from our step response. Firstly,
K is given by:

K =
∆y

∆u
=

yss − y0
umax − umin

(3.2)

where yss is our steady state final value, y0 is our starting angular velocity and umax/umin
are our maximum and minimum input signals. From figure 2 we can see that the steady
state value of our 57g disc for a 2V step input is ' 72. Since both our input and output
starts at 0 our value of K is given by: K = 72−0

2−0 ' 36.

Now we can calculate our time constant τ which is defined as the time taken for the system
output to reach 63.2% (1− 1

e
) of the final output. However, we must also subtract the time

at which the step was applied (t0). So if y(t1) = 0.632∆y + y0 then τ = t1 − t0. Knowing
this, and knowing that ∆y = 72 then:

y(t1) = 0.632∆y + y0 = 0.632(72) + 0 = 45.504. (3.3)

Inspecting our CSV table of date, we can see that the time at which our angular velocity is
45.504 is 0.5 seconds. Thus, t1 = 0.5 seconds. We can also see from our CSV file that our
step voltage was applied at 0.12 seconds so t0 = 0.12. Therefore:

τ = t1 − t0 = 0.5− 0.12 = 0.38 (3.4)

To verify our results we can use the inbuilt graphing tool on the remote lab interface. Select-
ing ”Plot Function: Step” on the ”graph” tool we can enter our calculations and plot a step
response curve over our experimental curve. The curves match so our values are approxi-
mately accurate. We now repeat this experimental process for a 6V step input. We then
repeat both step inputs for our second disc (110g). Note that for our 110g Disc experiments
we need to allow a longer time to reach our steady state value. At each stage we download
the CSV data file and perform the analysis as above. We can then produce a table of results
as in table 1. We also plot the response curves for each separate experiment (figure 2).
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Disk Info 2V Step 6V Step
No. Details K τ t0 K τ t0
1 57g 36 0.38 0.12 47.1 0.265 0.1
2 110g 34.95 1.1 0.08 46.2 0.759 0.08

Table 1: Results of Step Response Experiments
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Figure 2: Exercise 3.5.1, Step Response, Angular Velocity (ω) vs Time (s)

Exercise 3.5.2: Derive 1st Order Transfer Functions for each Disk

The transfer function of our 1st Order Velocity Control System is given by equation 3.1.
Using values from table 1, the experimentally derived transfer functions are as follows. For
the 57g Disc with a 2V step input the transfer function is:

Ωm(S)

Vm(S)
=

K

τs+ 1
=

36

0.38s+ 1
(3.5)

For the 57g Disc with a 6V step input the transfer function is:

Ωm(S)

Vm(S)
=

K

τs+ 1
=

47.1

0.265s+ 1
(3.6)

For the 110g Disc with a 2V step input the transfer function is:
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Ωm(S)

Vm(S)
=

K

τs+ 1
=

34.95

1.1s+ 1
(3.7)

For the 110g Disc with a 6V step input the transfer function is:

Ωm(S)

Vm(S)
=

K

τs+ 1
=

46.2

0.759s+ 1
(3.8)

Exercise 3.5.3: Discuss and give reasons for the Discrepancy be-
tween 2V and 6V Transfer Functions

From figure 2 we can see the step responses with a 6V step input have steeper transient
stages and therefore, they take a shorter time to reach their final steady state value. This
is supported by our figures in table 1 as we can see that the time constants (τ) of the step
responses with 6V step inputs are lower. For the 57g disc, the time constant is 43% higher
for the 2V step. For the 110g disc, the time constant is 45% higher for the 2V step. In terms
of our values for gain (K) the 6V step input produces a higher gain for both discs. The gain
is 30% higher for the 57g disc and 32% higher for the 110g disc.

The reason for these discrepancies is likely to do with the torque of the system. As dis-
cussed in exercise 2.3.2 the torque of the system is the driving force that turns our disc load.
Torque will be higher at a higher step voltage. Higher torque means higher acceleration
according to the equation:

dwm(t)

dt
=
τm(t)

Jeq
(3.9)

where τm is our torque. The higher acceleration explains why the transient response for our
6V step input is so much faster (figure 2). The higher torque also causes the higher gain
(K).

Exercise 3.5.4: Impact of Physical size of the Rotating Mass on the
Transient and Steady State Response

The physical size of the disc affects its moment of inertia (Jd). The formula for moment of
inertia of a body is given by:

Jd =
N∑
i=1

mir
2
i (3.10)

Where ri is the distance the point masses lie from the axis of rotation. Our 110g disc has
an outer radius 85mm while our 57g disc has an outer radius of 62mm. Since more mass
is distributed further out we can see from equation 3.10 that the moment of inertia of the
bigger disc will be higher. A higher moment of inertia means the acceleration of our system
will be lower according to equation 3.9 above, where Jeq is the total moment of inertia of the
whole system. This will slow down our transient response and give us a higher value of τ .
This is why our 110g disc has a slower transient response (see figure 2). Applying this theory
to our design requirements for real world systems, if we want our radar surveillance system
to have a fast transient response it makes sense to keep it as small and light as possible. Of
course, this might be impractical or tricky to achieve.
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Section 4: Validation using First Principles

Exercise 4.3.1: Derive Transfer Function of each Disc Tested

In this exercise we want to derive the transfer function of our system from first principles.
Using the circuit diagram of our motor system and applying Kirchoff’s Voltage Law, we get:

vm(t)−Rm(t)im(t)− Lm
dim(t)

dt
− eb(t) = 0 (4.1)

Where vm is the input voltage, Rm is the motor resistance, im is the motor current, Lm is
the motor inductance and eb is the back EMF. The back EMF voltage is given by:

eb(t) = Kmωm(t) (4.2)

where Km is the motor constant and ωm is our angular velocity. Since Lm is 0, combining
equation 4.1 with 4.2 and rearranging for im we get:

im(t) =
vm(t)−Kmωm(t)

Rm

(4.3)

Torque is related to current by the expression: τm(t) = Ktim(t), where Kt is the torque
constant. Subbing equation 4.3 into this relationship we get:

τm(t) = Kt(
vm(t)−Kmωm(t)

Rm

) (4.4)

Torque is also given by the motor shaft equation: τm(t) = Jeq
dωm
dt

, where Jeq is the total
moment of inertia of the system. Combining equation 4.4 with this expression gives:

Jeq
dωm(t)

dt
= Kt(

vm(t)−Kmωm(t)

Rm

) (4.5)

Now we perform a Laplace transform on both sides of our expression in order to convert to
the s domain. This leaves us with:

JeqsΩm(s) = Kt(
Vm(s)−KmΩm(s)

Rm

) (4.6)

Now we perform a series of rearrangements and then in order to get our transfer function
into the same format as equation 3.1 we divide the top and bottom of the fraction by KtKm.
This leaves us with:

Ωm(s)

Vm(s)
=

Kt

JeqsRm +KtKm

=
Kt

KtKm
JeqRm
KtKm

s+ 1
(4.7)

For both discs Kt = 0.02Nm/A, Km = 0.02Vs/rad and Rm = 1.9Ω. For the 57g disc, the
total moment of inertia Jeq of the system is 4.26×10−5kgm2. Therefore subbing these values
into equation 4.7 the transfer function is given by:

Ωm(s)

Vm(s)
=

0.02
(0.02)(0.02)

(4.26×10−5)(1.9)
(0.02)(0.02)

s+ 1
=

50

(0.20235)s+ 1
(4.8)

For the 110g disc, Jeq = 11.8× 10−5kgm2 so the final transfer function of the 110g disc is:

Ωm(s)

Vm(s)
=

0.02
(0.02)(0.02)

(11.8×10−5)(1.9)
(0.02)(0.02)

s+ 1
=

50

(0.5605)s+ 1
(4.9)
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Exercise 4.3.2: Do these Transfer Functions match the ones in Sec-
tion 3? If not why?

These transfer functions match the ones that we calculated experimentally in Section 3 quite
well but they are not a perfect match. There are a few possible reasons for this. The first
thing to notice is the transfer functions based on the 6V step in Section 3 are much closer
approximations of the ”theoretical” transfer functions than the 2V step transfer functions.
However, even when compared to the transfer functions from the 6V step input we can see
that there are discrepancies. From table 1, the 57g disc has a τ of 0.265 vs. the theoretical
0.20235 and the 110g disc has a τ of 0.759 vs 0.5605. The gain values (K) are also slightly
lower.

The higher time constants of the experimentally derived transfer functions could be due
to mechanical losses (wind/ air resistance). These factors would slow down our step re-
sponse. Other inefficiencies in the DC motor such as magnetic losses could affect our τ and
K values. Temperature fluctuations which are not present in theoretical systems could affect
our step response. Finally, there could be non-conformity between the ”designed” moment
of inertia of the disc (Jeq) and the actual moment of inertia in the real world experiment
which would affect the transfer function.

Exercise 4.3.3: Simulate in MATLAB the Derived Transfer Functions

1 clearvars % clear variables
2

3 tau = 0.20235; % time constant value
4 K = 50; % gain value
5 tFinal = 7; % length of time of response
6

7 sys = tf(K,[tau, 1]); % define transfer function
8

9 step(sys,tFinal) % plot step response of transfer function

Using the tf() and step() MATLAB functions we produce the above code. Executing this
script will plot our step response in a figure. We can edit the values of tau, K and tFinal

to plot the theoretical transfer function of each disc (figure 3).

(a) 57g Disc Step Response (b) 110g Disc Step Response

Figure 3: MATLAB plots of theoretical step responses
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Comparing these graphs to our experimental results, we can see the faster and steeper
transient stage of the theoretical response, particularly when compared to the 2V responses.
This was expected as we know the value of τ is lower. This is due to there being no real
world influences. We also see there is no variation in the steady state region whereas in our
experiments we saw minor fluctuations in the steady state value (yss).

Exercise 4.3.4: Equivalent RC Circuit

We must create a simple RC circuit that can mimic our system. We assume that the gain
(K) = 1. An RC circuit is essentially a potential divider with a resistor (R) on top and a
capacitor (with impedance Xc) on the bottom. The equation for this potential divider is:

Vout = Vin ×
Xc

R +Xc

(4.10)

The impedance of a capacitor in the s (Laplace) domain is given by Xc(s) = 1
sC

. Therefore,
subbing our impedance into the potential divider equation (equation 4.10) we get:

Vout(s)

Vin(s)
=

1
sC

R + 1
sC

=
1

RCs+ 1
(4.11)

Since we are assuming the gain of our theoretical system derived in Exercise 4.3.1 is 1 we can
directly compare it to our RC transfer function (equation 4.11). Now, given that the capacitor
size is 47µF we need to pick resistor values to replicate the theoretical transfer functions of
our 57g and 110g systems. For our 57g disc system we know that τ = RC = 0.20235.
Therefore our calculation is given as: R = τ

C
= 0.20235

47×10−6 = 4305.31Ω. Similarly, for our 110g

disc system we know τ = RC = 0.5605 therefore: R = τ
C

= 0.5605
47×10−6 = 41925.53Ω

Section 5: Characterisation of 2nd Order Systems

Exercise 5.6.1: Calculate ωn/ ζ and Derive Transfer Functions

In this exercise we must perform the experiment in Section 5 of the manual [1] and use our
results to calculate the underdamped natural frequency (ωn) and damping ratio (ζ) for each
disc. Then we derive our transfer functions. Using the ”Position (PID)” mode we record a
second order response for both discs with a step input of 6.28 rads and save the data to a
CSV file. For clarification the two responses are pictured in Figure 4 below.
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(a) 57g Disc, 6.28 rads input

0 1 2 3 4
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(b) 110g Disc, 6.28 rads input

Figure 4: Exercise 5.6.1, Second Order Step Response, Angular Position vs Time (s)
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Firstly, we will perform the calculations for the 57g disc. The first step is to calculate the
percentage overshoot (P.O) of our response. This is given by:

P.O =
ymax −R0

R0

× 100 (5.1)

Where ymax is the peak value of our response and R0 is our input. For the 57g response
given in figure 4 P.O = 9.9−6.28

6.28
× 100 = 57.64%. The next thing we calculate is tp (the peak

time) which is given by the time it takes the system to reach its max value (ymax) minus the
time the step input is applied. For the 57g disc, tp = tmax − t0 = 0.3− 0.08 = 0.22

We can now use our values for P.O and tp to calculate the underdamped natural frequency
and damping ratio for the 57g disc. Our damping ratio (ζ) and natural frequency (ωn) are
given by the following expressions. Subbing in our values for P.O and tp we get:

ζ =

√
ln (P.O

100
)2

π2 + ln (P.O
100

)2
=

√
ln (57.64

100
)2

π2 + ln (57.64
100

)2
= 0.1727 (5.2)

ωn =
π

tp(
√

1− ζ2)
=

π

(0.22)(
√

1− (0.1727)2)
= 14.4978 (5.3)

We can now repeat these calculations for our 110g disc system. Doing so we will produce a
table of results like table 2 below.

Disk Info Measurements Calculations
No. Details R0 ymax t0 tmax tp P.O ζ ωn
1 57g 6.28 9.9 0.08 0.3 0.22 57.64% 0.1727 14.4978
2 110g 6.28 10.64 0.06 0.439 0.379 69.43% 0.11536 8.3449

Table 2: Step Response Measurements for Second Order System

The final step of this exercise is to derive the second order transfer functions of our 57g and
110g systems. We use the standard transfer function of a second order dynamic system [1].
For our 57g disc system, subbing in our values from table 2, the transfer function equals:

Y (s)

R(s)
=

ω2
n

s2 + 2ζωns+ ω2
n

=
(14.4978)2

s2 + 2(2.504)s+ (14.4978)2
=

210.186

s2 + 5.008s+ 210.186
(5.4)

Similarly for our 110g disc system, subbing in our table 2 values the transfer function is:

Y (s)

R(s)
=

ω2
n

s2 + 2ζωns+ ω2
n

=
(8.3449)2

s2 + 2(0.96267)s+ (8.3449)2
=

69.637

s2 + 1.9253s+ 69.637
(5.5)

Exercise 5.6.2: Using 1st Order Transfer Functions, Derive 2nd
Order Transfer Functions

We know we can derive the angular position transfer function of our motor/disc assembly or
”plant” (P (s)) by integrating the first order velocity transfer function (equation 3.1). Since
in the s domain, integrating is the same as multiplying by 1

s
we calculate:
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P (s) =
Θm(s)

Vm(s)
=

K

τs+ 1
× 1

s
=

K

s(τs+ 1)
(5.6)

Our overall second order system is a simple closed loop system composed of a compensator
with transfer function C(s) = 1 and a motor/disc assembly with transfer function P (s).
Knowing this, and subbing in equation 5.6 for P (s), we derive the overall transfer function
of our second order system as:

G(s) =
C(s)P (s)

1 + C(s)P (s)
=

K
τ

s2 + 1
τ
s+ K

τ

(5.7)

We can use this equation, along with our values of K and τ from Section 3 (table 1) to derive
the transfer functions of our second order system for our 57g and 110g disc systems. There
are 2 transfer functions for each disc (2V and 6V step inputs). For the 57g disc (2V Step
input), the transfer function is:

G(s) =
K
τ

s2 + 1
τ
s+ K

τ

=
36
0.38

s2 + 1
0.38

s+ 36
0.38

=
94.7368

s2 + 2.63s+ 94.7368
(5.8)

For the 57g disc system (6V Step input), the transfer function is:

G(s) =
K
τ

s2 + 1
τ
s+ K

τ

=
47.1
0.265

s2 + 1
0.265

s+ 47.1
0.265

=
177.7258

s2 + 3.774s+ 177.7358
(5.9)

For the 110g disc system (2V Step input), the transfer function is:

G(s) =
K
τ

s2 + 1
τ
s+ K

τ

=
34.95
1.1

s2 + 1
1.1
s+ 34.95

1.1

=
31.772

s2 + 0.909s+ 31.772
(5.10)

For the 110g disc system (6V Step input), the transfer function is:

G(s) =
K
τ

s2 + 1
τ
s+ K

τ

=
46.2
0.759

s2 + 1
0.759

s+ 46.2
0.759

=
60.87

s2 + 1.317554s+ 60.87
(5.11)

Comparing these to our calculated second order transfer functions from Exercise 5.6.1 we
see that the transfer functions based on the 6V step inputs are much better approximations
than the 2V transfer functions.

Exercise 5.6.3: Calculate Peak Time (tp) and P.O from the Transfer
Functions in Exercise 5.6.2

We calculate the tp and P.O of our transfer functions as follows. First for the transfer function
of the 57g disc with 2V step input. Using the general transfer function of a second order

system we know: wn =
√

36
0.38

= 9.7333 and ζ = 1
2ωn(0.38)

= 0.1352. Therefore, according to

the rearranged versions of equations 5.2 and 5.3:

P.O = 100e
− πζ√

1−ζ2 = 100e
− π(0.1352)√

1−(0.1352)2 = 65.137% (5.12)

tp =
π

ωn
√

1− ζ2
=

π

9.7333(
√

1− (0.1352)2)
= 0.3258 (5.13)

Now we can repeat for our other three transfer functions from Exercise 5.6.2. When we
complete the calculations we can produce a table of results (table 3).
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Disk Info 2V 6V
No. Details tp P.O tp P.O
1 57g 0.3258 65.137% 0.238 63.818%
2 110g 0.5592 77.566% 0.4041 76.62%

Table 3: Peak Time and P.O values of Exercise 5.6.2 Transfer Functions

Exercise 5.6.4: Discrepancies in Measured and Calculated Figures

Our calculated figures derived from our 6V step input are much closer to our Measured P.O
and tp from Exercise 5.6.1 than the calculated figures from our 2V step input which is to be
expected (see exercise 3.5.3). However there are still minor discrepancies. For our 57g disc
our tp for our calculated values is 8.1% higher than our measured value and our P.O is 10%
higher.

These discrepancies could come from the fact that our calculated values are based off our
first order velocity system experiment from Section 3. Our disc encoder outputs position
data so the data is being derived in this case to get velocity measurements. This process
likely introduces some error. Our measured values are based on the direct position data
outputted by the encoder during our second order system experiment.

Exercise 5.6.5: Steady State Error Calculations

First, lets consider our measured steady state errors. Using the ”Position (PID)” setting we
performed two ramp inputs: 1 rad/s for 10 seconds and 5 rad/s for 3 seconds, on each disc.
The time for each ramp input was not long enough for the response to reach a steady state
(oscillations were still present). So, in accordance with the lab manual, a linear fit was drawn
from 1 second to near the end of the experiment. The steady state error was then measured
as the vertical distance between these linear fits and our ramp input. The measured steady
state errors are recorded in Table 4.

Now we can calculate our theoretical steady state errors using the final value theorem.
According to the final value theorem the steady state error (ess) is given by:

ess = lim
s→0

sE(s) = lim
s→0

s[R(s)− Y (s)] = lim
s→0

sR(s)[1− Y (s)

R(s)
] (5.14)

So firstly for the 57g disc. For the step input steady state error, R(s) = R0

s
where R0 = 6.28,

and Y (s)
R(s)

is the transfer function derived in Exercise 5.6.1. Therefore using equation 5.4,

ess = lim
s→0

s
R0

s
[1− 210.186

s2 + 5s+ 210.186
] = lim

s→0
6.28[

s2 + 5s

s2 + 5s+ 210.186
] = 0

Now for the ramp input, R(s) = R0

s2
where R0 = 1 for the 1 rad/s ramp and R0 = 5 for the

5 rad/s ramp. Therefore, for the 1 rad/s ramp, the ramp steady state error is:

ess = lim
s→0

s
R0

s2
[1− 210.186

s2 + 5s+ 210.186
] = lim

s→0

1

[

s+ 5

s2 + 5s+ 210.186
] =

5

210.186
= 0.0238

And for the 5 rad/s ramp, the answer is simply 5[ 5
210.186

] = 0.11894 These calculations are
repeated for the 110g disc and then the results are recorded in table 4. Inspecting our table of
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results we can see that our measured steady state errors are much higher than our theoretical
errors. This is because our measured ramp inputs have only a finite time to settle while our
theoretical ramp inputs have infinite time to settle.

Disk Info Theoretical Measured

No. Details Step
Ramp Ramp

1 rad/s 5 rad/s 1 rad/s 5 rad/s
1 57g 0 0.0238 0.11894 0.1792 0.252
2 110g 0 0.0276 0.138 0.0689 0.95544

Table 4: Steady State Error Results, Exercise 5.6.5

Section 6: PID Controller Design

Exercise 6.2.1: Assessment of the Stability of the System

For this section we will be using the 57g disc. Assuming a pure proportional (P) controller
we must assess the stability of our system given by equation 5.7 where C(s) = Kp instead
of 1. So replacing C(s) with Kp we calculate:

G(s) =
KpP (s)

1 +KpP (s)
=

KKp
τ

s2 + 1
τ
s+ KKp

τ

(6.1)

Since we used the 57g disc in Section 5, and calculated values for ωn and ζ (table 2), we
know our value of τ = 1

2ζωn
= 0.1997 and K = ω2

nτ = 41.97. Subbing in these values we get:

G(s) =
(41.97)Kp
0.1997

s2 + 1
0.1997

s+ (41.97)Kp
0.1997

=
210.186Kp

s2 + 5.008s+ 210.186Kp

(6.2)

Now in order to assess the stability, we take the characteristic equation (s2 + 5.008s +
210.186Kp) and do a simple routh table. We find:

s2 1 210.186Kp

s1 5.008 0
s0 210.186Kp 0

The Routh-Hurwirz Criteria state that for the system to be stable NO sign change may
occur, so Kp > 0. Therefore our system is stable for ∞ > Kp > 0. The R-H criteria allow
us to establish absolute stability, but do not tell us about relative stability.

Exercise 6.2.2: Select Appropriate Controller Configuration

The controller design chosen was a PD controller. The reasons are as follows. In exercise
5.6.5 we derived the theoretical steady state error of our system for a step input. We got
a value of 0. The purpose of the Integral term is to remove any steady state error, but it
also worsens our response time and stability. Since we have no steady state error there is no
need to include the Integral term as it will worsen our response.

Including the Derivative term will improve the stability of our system which we assessed
in Exercise 6.2.1. It will reduce overshoot and settling time which will give us a better
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response. Issues only arise using the Kd term if we are using it in isolation (we are using it
with the Proportional term) or if there is substantial noise in the system, which there isn’t.

Exercise 6.3.1: Describe the PID Controller Design Experiment

We are aiming to establish the parameters of our PD system. We select the 57g disc from
the menu and use the ”Position (PID)” setting. We select the ”graph” option from the menu
to display our response. Firstly, we have to record the uncontrolled system. Set Kp = 1,
Ki = 0 and Kd = 0. Set the step input to 1 rad and run the experiment. Save the CSV of
the data.

Now we will use the Z-N Ultimate gain method to calculate our parameters. Set our Kp to
4 and keep our step input at 1. Running the experiment we notice more oscillations. Keep
running the experiment and adjusting Kp until we achieve a sustained oscillation, (our os-
cillations do not die out or grow). The value of Kp for which this is achieved is our Ultimate
Gain (Ku). For our experiment Ku = 9.47. Now we calculate our Ultimate Period (Tu) as
the time one oscillation takes. A good way to calculate this is to measure the time it takes
for 10 periods and divide by 10. Therefore: Tu = 1.597

10
= 0.1597 seconds.

Now using our values of Ku and Tu with the PD Z-N Table from Lecture 11 [2] we can
find our parameters. So, for a PD system, Ki = 0 and:

Kp = 0.8×Ku = 0.8× 9.47 = 7.576 (6.3)

Kd = Td ×Kp =
Tu
8
×Kp =

0.597

8
× 7.576 = 0.15152 (6.4)

Plugging these parameters into our experiment and setting our step input to 1 rad again we
run and record our response using Z-N derived parameters. Save the CSV of the data.

Finally we tweak our Z-N parameters to get an optimised response. We can use the guide-
lines on slide 11 of lecture 11 [2]. Normally we would adjust Ki first but since we are using
a PD system we start with Kp. We want to achieve an overshoot of less than 10% and a
rise time as fast as possible. According to slide 11, decreasing Kp will increase rise time and
decrease overshoot so we decrease Kp from 7.576 to 5. We then reduce further from 5 to 3.
Our overshoot is now about 50% but our settling time is still quite long.

We can now tweak our value of Kd. From slide 11 we know that increasing Kd will re-
duce our settling time and further reduce our overshoot. We increase Kd from 0.15152 to
0.5. This massively reduces our settling time and our overshoot is now just 28%. Increasing
further to 1.5 gives us our desired overshoot of 4%. Our rise time is now very fast and
our overall response follows our step input closely. Our steady state error, as predicted in
Exercise 5.6.5 is 0. The parameters used for each response are included in table 5 and figures
of all three responses are shown in figure 5.

Parameter Uncontrolled Z-N Parameters Optimised Controller
Kp 1 7.576 3
Ki 0 0 0
Kd 0 0.15152 1.5

Table 5: PID Controller Parameters
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Figure 5: PID Controller Experiment Responses

Exercise 6.3.2: Compare Experiment Results

Our Final optimised controller has a very fast rise time. The settling time is very short and
the overshoot is very small. Our uncontrolled system actually has a better response than
our Z-N system. This is not too unusual though as Z-N parameters often do not give a very
optimal response. Instead, they serve as a good starting point to find our final optimised
values. A table fully comparing the three responses is shown in table 6.

P.O Settling Time Rise Time SS Error

Uncontrolled
Poor P.O,
57.64%

2 oscillations
before settling.

Slow Rise time,
but stable

negligible

Z-N
Poor P.O,
82%

5 oscillations
before settling.

Fast rise time,
but unstable

negligible

Optimised
Very good P.O,
Just 4%

Only one oscillation
before settling.

Very fast rise time
and stable

negligible

Table 6: Comparison of Responses

Exercise 6.3.3: Derive Full System Transfer Function

First, we consider the type of controller that was used. We used a PD controller so therefore
C(s) = Kp + Kds since Ki = 0. We know from previous exercises that P (s) = K

s(τs+1)
.

Therefore using equation 5.7 we calculate our transfer function as:

G(s) =
C(s)P (s)

1 + C(s)P (s)
=

(Kp +Kds)(
K

s(τs+1)
)

1 + (Kp +Kds)(
K

s(τs+1)
)

(6.5)

Now we perform some simplification and sub in our values: Kp = 3, Kd = 5 K = 41.97,
τ = 0.1997. We end up with the following equation, which is our Final Transfer Function:

G(s) =
(KdK

τ
)s+ (KpK

τ
)

s2 + (1+KdK
τ

)s+ (KpK
τ

)
=

(315.248)s+ (630.4957)

s2 + (320.255)s+ (630.4957)
(6.6)

Exercise 6.3.4: Range of Values of Ki for a Stable System

We are trying to find the range of Ki for a stable system if the term was included in our
controller. Firstly, we need to find our transfer function including our Ki parameter and
then perform a Routh Table analysis. For a PID controller C(s) = Kp + Ki

s
+Kd. Using the

same derivation method used in Exercise 6.3.3 we find:
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G(s) =
C(s)P (s)

1 + C(s)P (s)
=

(Kp + Ki
s

+Kds)(
K

s(τs+1)
)

1 + (Kp + Ki
s

+Kds)(
K

s(τs+1)
)

(6.7)

G(s) =
KKds

2 +KKps+Ki

τs3 + (1 +KKd)s2 + (KKp)s+KKi

(6.8)

Taking our characteristic equation (the denominator) we perform a Routh Table analysis
which yields:

s3 τ KKp

s2 1 +KKd KKi

s1 b2 0
s0 c2 0

From this, according to the Routh-Hurwitz criteria, for the system to be stable b2 > 0 and
c2 > 0. b2 and c2 are calculated by matrix algebra. Therefore:

b2 =
(1 +KKd)(KKp)− (τ)(KKi)

1 +KKd

> 0 (6.9)

c2 =
(b2)(KKi)− (1 +KKd)(0)

b2
= KKi > 0 (6.10)

From b2, subbing in our values we get: 8052.574− 0.1997Ki > 0, 40323.86 > Ki. And from
c2 we get: Ki > 0. Overall our range of values for Ki that give a stable system are:

40323.36 > Ki > 0 (6.11)

Exercise 6.3.5: PID Design Compromises for Real World Systems

We learned when designing our PID controller that certain parameters have adverse affects
as well as useful ones. For example, increasing our Ki term reduced steady state error to 0
but also negatively affected our stability and settling time. When making compromises in
PID controller design its important to keep in mind the design requirements of the real world
system. For example for a Tracking Radar system for aeroplanes, we require our response
to be very fast and immune to disturbances. This means we require a high Kd term to
maximise our stability and minimise settling time. Other systems may not require as fast
a response but they need very finely tuned accuracy like a temperature sensor. This means
we can’t afford any steady state error so we might have a value for our Ki term at the cost
of stability and rise time.

We must also consider the fact that our parameters Kp, Ki and Kd all affect each other,
so changing one parameter can have an effect on the others. Therefore, we must perform
tests and calibrations after changing our parameters to ensure the changes have given us the
desired response.
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